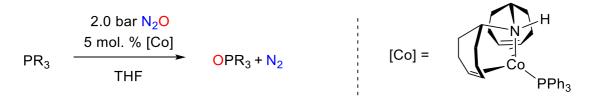
Phosphane Oxidation Catalyzed by Zerovalent Cobalt Complexes using Nitrous Oxide as Oxidant


<u>Thomas L. Gianetti</u>,^{a*} R. E. Rodríguez-Lugo,^a J. Harmer,^b H. Grützmacher^{a*}

^a ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland; ^b Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, 4072, Australia

hgruetzmacher@ethz.ch

Nitrous oxide (N₂O) is industrially obtained as a by-product which has been recently identified as one of the largest global ozone depleting $agents^{[1]}$ and a greenhouse gas 300 times more powerful than CO₂.^[2] Its transformation to less harmful chemicals is of particular interest but very challenging,^[4] since even if thermodynamically unstable, nitrous oxide is kinetically inert.^[3] Phosphine oxides are an important class of compounds with several applications: ligands in metal-catalyzed cross-coupling reactions (secondary phosphine oxides, O=PHR₂),^[5] contact doping for silicon wafers and nanostructures, photoinitiators.^[6] Traditional routes to their preparation (*e.g.* peroxides) are useful but present problems such as selectivity, functional group tolerance, complicated work-up and generation of chemical waste, and these route are not suitable for highly reactive or sensitive phosphines. The present work illustrates the use of zerovalent amino-olefin cobalt complexes in the selective oxidation of highly reactive phosphines using nitrous oxide as oxidant under mild reaction conditions.

Figure 1

- [1] A. R. Ravishankara, J. S. Daniel, R. W. Portmann, Science, 2009, 326, 123.
- [2] J. Hansen, M. Sato, Proc. Natl. Acad. Sci. USA., 2004, 101, 16109.
- [3] E. Eger, I., II. In *Nitrous Oxide N₂O*, Elsevier: New York, **1985**.
- [4] K. Severin Chem. Soc. Rev. 2015, 44, 6375-6386
- [5] T. M. Shaikh, C. Weng, F. Hong, Coord. Chem. Rev., 2012, 256, 771
- [6] L. Gonsalvi, M. Peruzzini. Angew. Chem. Int. Ed., 2012, 51, 7895.